Lifting Defects for Nonstable K0-theory of Exchange Rings and C*-algebras

نویسنده

  • FRIEDRICH WEHRUNG
چکیده

The assignment (nonstable K0-theory), that to a ring R associates the monoid V(R) of Murray-von Neumann equivalence classes of idempotent infinite matrices with only finitely nonzero entries over R, extends naturally to a functor. We prove the following lifting properties of that functor: (i) There is no functor Γ, from simplicial monoids with order-unit with normalized positive homomorphisms to exchange rings, such that V ◦Γ ∼= id. (ii) There is no functor Γ, from simplicial monoids with order-unit with normalized positive embeddings to C*-algebras of real rank 0 (resp., von Neumann regular rings), such that V ◦Γ ∼= id. (iii) There is a {0, 1}-indexed commutative diagram ~ D of simplicial monoids that can be lifted, with respect to the functor V, by exchange rings and by C*-algebras of real rank 1, but not by semiprimitive exchange rings, thus neither by regular rings nor by C*-algebras of real rank 0. By using categorical tools (larders, lifters, CLL) from a recent book from the author with P. Gillibert, we deduce that there exists a unital exchange ring of cardinality א3 (resp., an א3-separable unital C*-algebra of real rank 1) R, with stable rank 1 and index of nilpotence 2, such that V(R) is the positive cone of a dimension group but it is not isomorphic to V(B) for any ring B which is either a C*-algebra of real rank 0 or a regular ring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifting Units modulo Exchange Ideals and C∗-algebras with Real Rank Zero

Given a unital ring R and a two-sided ideal I of R, we consider the question of determining when a unit of R/I can be lifted to a unit of R. For the wide class of separative exchange ideals I, we show that the only obstruction to lifting invertibles relies on a K-theoretic condition on I. This allows to extend previously known index theories to this context. Using this we can draw consequences ...

متن کامل

Dimension and Torsion Theories for a Class of Baer *-Rings

Many known results on finite von Neumann algebras are generalized, by purely algebraic proofs, to a certain class C of finite Baer *-rings. The results in this paper can also be viewed as a study of the properties of Baer *-rings in the class C. First, we show that a finitely generated module over a ring from the class C splits as a direct sum of a finitely generated projective module and a cer...

متن کامل

Arithmetic Deformation Theory of Lie Algebras

This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...

متن کامل

A note on lifting projections

Suppose $pi:mathcal{A}rightarrow mathcal{B}$ is a surjective unital $ast$-homomorphism between C*-algebras $mathcal{A}$ and $mathcal{B}$, and $0leq aleq1$ with $ain  mathcal{A}$. We give a sufficient condition that ensures there is a proection $pin mathcal{A}$ such that $pi left( pright) =pi left( aright) $. An easy consequence is a result of [L. G. Brown and G. k. Pedersen, C*-algebras of real...

متن کامل

Nonstable K-theory for Z-stable C-algebras

Let Z denote the simple limit of prime dimension drop algebras that has a unique tracial state (cf. Jiang and Su [11]). Let A 6= 0 be a unital C∗-algebra with A ∼= A ⊗ Z. Then the homotopy groups of the group U(A) of unitaries in A are stable invariants, namely, πi(U(A)) ∼= Ki−1(A) for all integer i ≥ 0. Furthermore, A has cancellation for full projections, and satisfies the comparability quest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011